Муниципальное казенное общеобразовательное учреждение «Шастовская средняя общеобразовательная школа»

1.1700年6年

«УТВЕРЖДЕНА»Директор МКОУ «Шастовская СОШ»
С.Б. Коротков
Приказ № 14
от «25" № 2015

Рабочая программа учебного предмета «Химия» для 11класса (профильный уровень)

с. Шастово, 2015г.

Пояснительная записка

Рабочая программа по химии составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования, примерной программы среднего (полного) общего образования по химии (профильный уровень), а так же программы курса химии для УШ-Х1 классов общеобразовательных учреждений (профильный уровень). Автор: О.С. Габриелян, Дрофа, М.,2008 год,78с.

Программа рассчитана на102 часа в XI классе, из расчета - **3** учебных часа в неделю, из них: для проведения контрольных - 5 часов, практических работ - 8 часов. Учитывая продолжительность учебного года (34 недели).

В рабочей программе нашли отражение цели и задачи изучения химии на ступени полного общего образования, изложенные в пояснительной записке Примерной программы по химии. В ней так же заложены возможности предусмотренного стандартом формирования у обучающихся общеучебных умений и навыков, универсальных способах деятельности и ключевых компетенций.

Изучение химии на ступени основного общего образования направлено на достижение следующих целей:

освоение важнейших знаний об основных понятиях и законах химии, химической символике;

овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;

развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;

воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;

применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Принципы отбора основного и дополнительного содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а так же возрастными особенностями учащихся. В процессе изучения курса предусматривается связь с биологией, физикой, математикой.

Промежуточная аттестация проводится согласно Уставу и локальному акту образовательного учреждения. Контроль знаний планируется в форме контрольных работ и тестов.

На основании того, что рабочая программа была составлена на основе федерального компонента государственного стандарта основного общего образования, Примерной программы основного общего образования по химии и авторской, были внесены следующие изменения:

- в авторскую:

наименование разделов и тем соответствуют Примерной программе; все демонстрации, лабораторные опыты, практические занятия взяты из примерной программы; введена тема «Химия и общество»; включен урок по теме: «Единая природа химических связей», так как он соответствует Примерной программе (хотя отсутствует в Стандарте):

- в примерную:

общие химические свойства металлов (учитывая требования к уровню подготовки выпускников);

• «Водородная связь» и «Дисперсные системы» - темы подлежат изучению, но не включены в требования к уровню подготовки выпускников:

Так как данная программа рассчитана на з часа в неделю (102 часа), увеличено количество часов по всем разделам, что позволяет реализовать примерную и авторскую программу.

Авторской программе соответствуют уроки по темам:

Агрегатные состояния вещества.

Массовая и объемная доля компонентов в смеси. Массовая доля примесей. Качественные реакции на неорганические вещества и ионы (идентификация неорганических соединений).

Учитывая основную идею авторского курса - единстьо органической и неорганической химии на основе общности понятий, законов и теорий, предусматривается изучение тем по органической химии: Теория строения химических соединений А.М.Бутлерова. Классификация органических соединений. Особенности реакций в органической химии. Теория строения химических соединений А.М.Бутлерова.

Генетическая связь между классами неорганических и органических соединений.

• ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

Ученик должен знать:

важнейшие химические понятия: вещество, химический элемент, атом, молекула, атомная и молекулярная масса, ион, аллотропия, изотопы, химическая связь, Электроотрицательность, валентность, валентность, степень окисления, моль, молярная масса, молярный объём, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие; основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;

основные теори химии: химической связи электролитической диссоциации;

важнейшие вещества и материалы: основные металлы и сплавы, серная, соляная, азотная, кислоты, щёлочи, аммиак, минеральные удобрения; Ученик должен уметь:

называть изученные вещества по «тривиальной» или международной номенклатуре;

определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединениях, окислитель и восстановитель; **характеризовать:** элементы малых периодов по их положению в ПСХЭ; общие химические свойства металлов, неметаллов, основных классов неорганических соединений;

объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;

выполнять химический эксперимент по распознаванию важнейших неорганических веществ;

проводить самостоятельный поиск химической информации с использованием различных источников;

использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту на производстве;

экологически грамотного поведения в о.с;

оценки влияния химического загрязнения о.с. на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием; приготовление растворов заданной концентрации в быту и на производстве.

Содержание учебного предмета (Зч в неделю; всего 102ч)

Тема 1

Строение атома (9ч)

Атом - сложная частица. Ядро и электронная оболочка. Электроны, протоны и нейтроны. Микромир и макромир. Дуализм частиц микромира.

Состояние электронов в атоме. Электронное облако и орбиталь. Квантовые числа. Форма орбиталей (s, p, d, f). Энергетические уровни и подуровни. Строение электронных оболочек атомов. Электронные конфигурации атомов элементов. Принцип Паули и правило Гунда. Электронно-графические формулы атомов элементов. Электронная классификация элементов: s-, p-, d-, f-семейства.

Валентные возможности атомов химических элементов. Валентные электроны. Валентные возможности атомов химических элементов, обусловленные числом неспаренных электронов в нормальном и возбужденном состояниях. Другие факторы, определяющие валентные возможности атомов: наличие неподеленных электронных пар и наличие свободных орбиталей. Сравнение понятий «валентность» и «степень окисления».

Периодический закон и периодическая система химических элементов Д.И. Менделеева и строение атома. Предпосылки открытия периодического закона: накопление фактического материала, работы предшественников (Й.Я. Берцелиуса, И.В. Деберрейнера, А.Э. Шанкуртуа, Дж.А. Ньюлендса, Л.Ю. Мейера); съезд химиков в Карлсруэ. Личностные качества Д.И. Менделеева.

Открытие Д.И. Менделеевым периодического закона. Горизонтальная, вертикальная и диагональная периодическая зависимости.

Периодический закон и строение атома. Изотопы. Современная трактовка понятия «химический элемент». Закономерность Ван-ден-Брука - Мозли. Вторая формулировка периодического закона. Периодическая система Д.И. Менделеева и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Третья формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д.И. Менделеева для развития науки и понимания химической картины мира.

знать/понимать

важнейшие химические понятия: вещество, химический элемент, атом, молекула, масса атомов и молекул, нуклиды и изотопы, атомные s-, p-, d-орбитали, валентность, степень окисления.

уметь

определять валентность и степень окисления; уметь характеризовать s-, p-, d- элементы по положению в периодической системе Д.И. Менделеева; объяснять зависимость свойств химического элемента и образованных им веществ от положения в периодической системе Д.И. Менделеева.

Тема 2 Строение вещества. Дисперсные системы (16ч)

Химическая связь. Единая природа химической связи. Ионная природа химической связи. Ионная химическая связь и ионные кристаллические решетки. Ковалентная химическая связь и ее классификация: по механизму образования (обменный и донорно-акцепторный), по электроотрицательности (полярная и неполярная). По способу перекрывания электронных орбиталей (сигма и пи), по кратности (одинарная, двойная, тройная и полуторная). Полярность связи и полярность молекулы. Кристаллические решетки веществ с ковалентной связью: атомная и молекулярная. Металлическая химическая связь и металлические кристаллические решетки. Водородная связь: межмолекулярная и внутримолекулярная. Механизм образования этой связи, ее значение.

Межмолекулярные взаимодействия.

Единая природа химических связей: ионная связь как предельный случай ковалентной полярной связи; переход одного вида связи в другой; разные виды связи в одном веществе и т.д.

Свойства ковалентной химической связи. Насыщаемость, поляризуемость, направленность. Геометрия молекул.

Гибридизация орбиталей и геометрия молекул, sp -гибридизация у алканов, воды, аммиака, алмаза; sp -гибридизация у соединений бора, алкенов, аренов, диенов и графита; sp-гибридизация у соединений бериллия, алкинов и карбина. Геометрия молекул названных веществ.

Полимеры органические и неорганические. Полимеры. Основные понятия химии высокомолекулярных соединений; «мономер», «полимер», «макромолекула», ^структурное звено», «степень полимеризации», «молекулярная масса». Способы получения полимеров: реакции полимеризации и поликонденсации. Строение полимеров: геометрическая форма макромолекул, кристалличность и аморфность, стереорегулярность. Полимеры неорганические и органические. Каучуки. Пластмассы. Волокна. Биополимеры: белки и нуклеиновые кислоты. Неорганические полимеры атомного строения (аллотропные модификации углерода, кристаллический кремний, селен и теллур цепочечного строения, диоксид кремния и др.) и молекулярного строения (сера пластическая и др.).

Теория строения химических соединений А.М. Бутлерова. Предпосылки создания теории строения химических соединений: работы предшественников (Ж.Б. Дюма, Ф.

Велер, Ш.Ф. Жерар, Ф.А. Кекуле), съезд естествоиспытателей в Шпейере. Личностные качества А.М. Бутлерова.

Основные положения теории химического строения органических соединений **и** современной теории строения. Изомерия в органической и неорганической химии. Взаимное влияние атомов в молекулах органических и неорганических веществ.

Основные направления развития теории строения органических соединений (зависимость свойств веществ не только от химического, но и от их электронного и пространственного строения). Индуктивный и мезомерный эффекты. Стереорегулярность.

Диалектические основы общности двух ведущих теорий химии. Диалектические основы общности периодического закона Д.И. Мнделеева и теории строения А.М. Бутлерова в становлении (работы предшественников, накопление фактов, участие в съездах, русский менталитет), предсказании (новые элементы - Ga, Se, Ge и новые вещества -изомеры) и развитии (три формулировки).

Дисперсные системы. Понятие о дисперсных системах. Дисперсная среда и дисперсная фаза. Типы дисперсных систем и их значение в природе и жизни человека. Дисперсные системы с жидкой средой: взвеси, коллоидные системы, их классификация. Золи и гели. Эффект Тиндаля. Коагуляция. Синерезис. Молекулярные и истинные растворы. Способы выражения концентрации растворов.

Практическая работа №1. «Решение экспериментальных задач по определению пластмасс и волокон».

Расчетные задачи.

- 1. Расчеты по химическим формулам.
- 2. Расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси.
- 3. Вычисление молярной концентрации растворов.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей.

Модели молекул различной геометрии. Модели кристаллических решеток алмаза и графита. Модели молекул изомеров структурной и пространственной изомерии. Свойства толуола. Коллекция пластмасс и волокон. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др. Модели молекул белков и ДНК. Образцы различных систем с жидкой средой. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты.

- 1. Свойства гидроксидов 3-го периода.
- 2. Ознакомление с образцами органических и неорганических полимеров.

знать/понимать

важнейшие химические понятия: ион, химическая связь, гибридизация орбиталей, пространственное строение молекул; дисперсные системы; истинные растворы; вещества и материалы: каучуки, пластмассы, волокна, биополимеры; основные теории химии: строения атома, химической связи, строения органических соединений (включая стереохимию); структурная и пространственная изомерия, индуктивный и мезомерный эффекты;

уметь

определять заряд иона, тип химической связи, пространственное строение молекул; тип кристаллической решетки; выполнять химический эксперимент по распознаванию неорганических и органических веществ; проводит расчеты по химическим формулам; расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси; вычисление молярной концентрации растворов.

Тема 3

Химические реакции (23ч)

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции; ее отличие от ядерной реакции. Реакции, идущие без изменения качественного состава веществ: аллотропизация, изомеризация и полимеризация. Реакции, идущие с изменением состава веществ: по числу и составу реагирующих и образующихся веществ (разложения, соединения, замещения и обмена); по изменению степеней окисления элементов (окислительно-восстановительные и неокислительно-восстановительные реакции); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные и ионные); по виду энергии, индуцирующей реакцию (фотохимические, радиационные, электрохимические, термохимические). Особенности классификации реакций в органической химии.

Вероятность протекания химических реакций. Закон сохранения энергии. Внутренняя энергия и экзо-и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения. Теплота образования. Понятие об энтальпии. Закон Г.И. Гесса и следствия из него. Энтропия. Энергия Гиббса. Возможность протекания реакций в зависимости от изменения энергии и энтропии.

Скорость химических реакций. Понятие о скорости реакции. Скорость гомо- и гетерогенной реакции. Энергия активации. Элементарные и сложные реакции. Факторы, влияющие на скорость химической реакции: природа реагирующих веществ; температура (закон Вант-Гоффа). Концентрация (основной закон химической кинетики); катализаторы. Катализ: гомо- и гетерогенный; механизм действия катализаторов. Ферменты. Их сравнение с неорганическими катализаторами. Ферментный катализ, его механизм. Ингибиторы и каталитические яды. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление и температура. Принцип Ле-Шателье.

Электролитическая диссоциация. Электролиты и неэлектролиты. Электролитическая диссоциация. Механизм диссоциации веществ с различным типом химической связи.. Свойства ионов. Катионы и анионы. Кислоты, соли, основания в свете электролитической диссоциации. Степень электролитической диссоциации, ее зависимость от природы электролита и его концентрации. Константа диссоциации. Ступенчатая диссоциация электролитов. Реакции, протекающие в растворах электролитов. Произведение растворимости.

Водородный показатель. Диссоциация воды. Константа диссоциации воды. Ионное произведение воды. Водородный показатель рН. Среды водных растворов электролитов. Значение водородного показателя для химических и биологических процессов.

Гидролиз. Понятие «гидролиз». Гидролиз органических соединений (галогеналканов, сложных эфиров, углеводов, белков, $AT\Phi$) и его значение. Гидролиз неорганических веществ. Гидролиз солей - три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое значение гидролиза.

Практическая работа №2. «Скорость химической реакции. Химическое равновесие.» **Практическая работа №3.** « Решение экспериментальных задач по теме « Гидролиз».

Расчетные задачи.

- 1. Расчеты по термохимическим уравнениям.
- 2. Вычисление теплового эффекта реакции по теплотам образования реагирующих веществ и продуктов реакции.
- 3. Определение рН раствора заданной молярной концентрации.
- 4. Расчет средней скорости реакции по концентрациям реагирующих веществ.
- 5. вычисления с использованием понятия «температурный коэффициент скорости реакции».
- 6. Нахождение константы равновесия реакции по равновесным концентрациям и определение исходных концентраций веществ.

Демонстрации. Модели н-бутана и изобутана. Получение кислорода из пероксида водорода и воды; дегидротация этанола. Цепочка превращений P-> P205->- H3P04; свойства соляной и уксусной кислот; реакции, идущие с образованием осадка, газа и воды; свойства металлов; окисление альдегида в кислоту и спирта в альдегид. Реакции горения; реакции эндотермические на примере реакции раз-

ложения (этанола, калийной селитры, известняка или мела) и экзотермические на примере реакций соединения (обесцвечивание бромной воды и раствора перманганата калия этиленом, гашение извести и др.). Взаимодействие цинка с раствором соляной и серной кислот при разных температурах, при разных концентрациях соляной кислоты; разложение пероксида водорода с помощью оксида марганца(1У), каталазы сырого мяса и сырого картофеля. Взаимодействие цинка с различной поверхностью (порошка, пыли, гранул) с кислотой. Модель «кипящего слоя». Смещение равновесия в системе $Fe + 3CNS^*$ Fe(CNS)3; омыление жиров, реакции этерификации.

Зависимость степени электролитической диссоциации уксусной кислоты от разбавления. Сравнение свойств 0,1H растворов серной и сернистой кислот; муравьиной и уксусной кислот; гидроксидов лития, натрия и калия. Индикаторы и изменение их окраски в различных средах. Сернокислый и ферментативный гидролиз углеводов. Гидролиз карбонатов, сульфатов, силикатов щелочных металлов; нитратов цинка или свинца (II). Гидролиз карбида кальция.

Лабораторные опыты.

- 3. Получение кислорода разложением пероксида водорода и (или) перманганата калия.
- 4. Реакции, идущие с образованием осадка, газа и воды для неорганических и органических кислот.
- 5. Использование индикаторной бумаги для определения рН слюны, желудочного сока и других соков организма человека.
- 6. Различные случаи гидролиза солей.

знать/понимать

важнейшие химические понятия: электролитическая диссоциация, кислотно-основные реакции в водных растворах, гидролиз, окисление и восстановление, электролиз. Скорость химической реакции, механизм реакции, катализ, тепловой эффект реакции, энтальпия, теплота образования, энтропия, химическое равновесие, константа равновесия; закон Гесса, закон действующих масс в кинетике и термодинамике;

уметь

определять характер среды в водных растворах, окислитель и восстановитель, направление смещения равновесия под влиянием различных факторов, типы химических реакций в неорганической и органической химии; объяснять зависимость скорости химической реакции от различных факторов; проводить расчеты по химическим уравнениям.

Тема 4

Вещества и их свойства (30ч)

Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.

Классификация органических веществ. Углеводороды и классификация веществ в зависимости от строения углеводородной цепи (алифатические и циклические) и от кратности связей (предельные и непредельные). Гомологический ряд. Производные углеводородов: галогеналканы, спирты, фенолы, альдегиды и кетоны, карбоновые кислоты, простые и сложные эфиры, нитросоединения, амины, аминокислоты.

Металлы. Положение металлов в периодической системе Д.И. Менделеева и строение атомов. Простые вещества - металлы: строение кристаллов и металлическая химическая связь. Аллотропия. Общие физические свойства металлов. Ряд стандартных электродных потенциалов. Общие химические свойства металлов (восстановительные свойства): взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), с водой, кислотами и солями в растворах, органическими соединениями (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Значение металлов в природе и в жизни организмов.

Коррозия металлов. Понятие «коррозия металлов». Химическая и электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллуогия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Переходные металлы. Железо. Медь, серебро; цинк, ртуть; хром, марганец (нахождение в природе; получение и применение простых веществ; важнейшие соединения).

Неметаллы. Положение в периодической системе Д.И. Менделеева, строение их атомов. Электроотрицательность. Инертные газы. Двойственное положение водорода в периодической системе. Неметаллы - простые вещества. Их атомное и молекулярное строение. Аллотропия и ее причины. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электоотрицательными ⁴ неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях со фтором, кислородом, сложными веществами - окислителями (азотной и серной кислотами и др.).

Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение молекул и кристаллов этих соединений. Физические свойства. Отношение к воде. Изменение кислотно-основных свойств в периодах и группах.

Несолеобразующие и солеобразующие оксиды.

Кислородные кислоты. Изменение кислотных свойств высших оксидов и гидроксидов неметаллов в периодах и группах. Зависимость свойств кислот от степени окисления неметаллов.

концентрированных серной, азотной кислот и разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты. Взаимодействие раствора гидроксида натрия с кислотными оксидами (оксидом углерода(1У)). Амфотерными гидроксидами (гидрокксидом цинка). Взаимодействие аммиака с хлороводородом и водой. Аналогично для метиламина. Взаимодействие аминокислот с кислотами и

щелочами. Осуществление переходов: Ca \rightarrow CaO \rightarrow Ca(OH)2; P \rightarrow P205 H3P04 \rightarrow Ca3(P04)2; Cи \rightarrow CuO \rightarrow CuS04-> Cu(OH)2 \rightarrow CuO \rightarrow Cu; C2H50H—▶C2H4 \rightarrow C2H4Bг.

Практическая работа № 4.Генетическая связь между классами органических и неорганических соелинений

Лабораторные опыты.

- 7. Ознакомление с образцами разных классов неорганических веществ.
- 8.Ознакомление с образцами разных классов органических веществ.
 - 9. Ознакомление с коллекцией руд.
 - 10. Сравнение свойств кремниевой, фосфорной, серной и хлорной кислот; сернистой и серной кислот; азотистой и азотной кислот.
 - 11. Свойства соляной, серной (разб.) и уксусной кислот.
 - 12. Взаимодействие гидроксида натрия с солями, сульфатом меди(П) и хлоридом аммония.
 - 13. Разложение гидроксида меди (II). Получение гидроксида алюминия и изучение его амфотерных свойств.

знать/понимать

важнейшие химические понятия: вещество, аллотропия, вещества молекулярного и немолекулярного строения, комплексные соединения; классификацию и номенклатуру неорганических и органических соединений; основные металлы и сплавы; минеральные и органические кислоты, щелочи, аммиак, углеводороды, анилин, графит, кварц

уметь

называть вещества по «тривиальной» и международной номенклатуре; уметь определять принадлежность веществ к различным классам органических и неорганических соединений, характер взаимного влияния атомов в молекулах; характеризовать общие химические свойства металлов, неметаллов, основных классов неорганичесих соединений; строение и свойства органических соединений (углеводородов, фенолов, альдегидов, кетонов, карбоновых кислот, аминов, аминокислот и углеводов); объяснять зависимость свойств неорганических веществ от их состава и строения; распознавать важнейшие неорганические и органические вещества; проводить расчеты по химическим уранениям.

Тема 5

Химия в жизни общества (9ч)

Химия и производство. Химическая промышленность, химическая технология. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы химического производства. Защита окружающей среды и охрана труда при химическом производстве. Основные стадии химического производства (аммиака и метанола).

Сравнение производства этих веществ.

Химия и сельское хозяйство. Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс (ППК). Удобрения и их классификация. Химические средства защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. Химизация животноводства.

Химия и экология. Химическое загрязнение среды. Охрана гидросферы **от** химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия.

Химия и повседневная жизнь человека. Домашняя аптечка. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища. Маркировка упаковок пищевых продуктов и промышленных товаров и умение их читать. Экология жилища. Химия и генетика человека.

Демонстрации. Модели производства серной кислоты и аммиака. Коллекция удобрений и пестицидов. Образцы средств бытовой химии и лекарственных препаратов. Коллекции средств гигиены и косметики, препаратов бытовой химии.

Практическая работа №5. «Получение газов и изучение их свойств.»

Практическая работа№ 6. « Решение экспериментальных задач по неорганической химии» Практическая работа № 7 «Решение экспериментальных задач по органической химии.» Практическая работа №8 «Сравнение свойств органических и неорганических соединений» Лабораторные опыты.

14.Ознакомление с коллекцией удобрений и пестицидов.

15.Ознакомление с образцами средств бытовой химии и лекарственных препаратов, изучение инструкций к ним по правильному и безопасному применению.

знать/уметь

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для для:

понимания глобальных проблем, стоящих перед человечеством: экологических, энергетических и сырьевых;

объяснения химических явлений, происходящих в природе, быту и на производстве; экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасной работы с веществами в лаборатории, быту, на производстве; - определения возможности протекания химических превращений в различных условиях и оценки их последствий;

распознавания и идентификации важнейших веществ и материалов; оценки качества питьевой воды и отдельных пищевых продуктов.

УЧЕБНО - ТЕМАТИЧЕСКИЙ ПЛАН

Nº	Тема	Количество часов	В том числе	
			лабораторных и практических работ	контрольных работ
1.	Строение атома.	9		1
2.	Строение вещества. Дисперсные системы	16	1 практическая работа 2 лабораторные работы	1
3.	Химические реакции	23	2 практических работы 4 лабораторные работы	1
4.	Вещества и их свойства	30	1 практическая работа 7 лабораторных работ	1
5.	Химия и общество	9	2 лабораторные работы	
6.	Химический практикум. Повторение.	4+10	4 практических работы	
7.	Итоговая контрольная работа	1		1
	Итого	102	15 лабораторных 8 практических работ	5

Список литературы и средства обучения

Рабочая программа ориентирована на использование учебника:

Химия 11 класс. Профильный уровень: Учебник для общеобразовательных учреждений. Габриелян О.С- М.: Дрофа, 2009.-399с. а также

методических пособий для учителя:

Габриелян О.С Программа курса химии для 8-11 классов общеобразовательных учреждений. - М.: Дрофа, 2008.-78с.

Габриелян О.С, Лысова ГГ., Введенская А.Г Химия. 11 класс: В 2ч. 4.1: Настольная книга учителя. - М.: Дрофа, 2003. - 320с.

Габриелян О.С, Лысова ГГ., Введенская А.Г. Химия. 11 класс: В 2ч. Ч. II: Настольная книга учителя. - М.: Дрофа, 2003. - 320c.

Дополнительная литература для учителя

Габриелян О.С, Остроумов И.Г Общая химия в тестах, задачах, упражнениях. 11 класс: Учеб. пособие для общеобразоват. учреждений. - М.: Дрофа, 2003.- 304с. Радецкий А.М., Горшкова В.П., Крутикова Л.Н. Дидактический материал по химии для 10-11 классов: пособие для учителя. - М.: Просвещение, 2004. - 79 с.

Дополнительная литература для учащихся

Бабков А.Б., Попков В.А.- Общая и неорганическая химия: Пособие для старшеклассников и абитуриентов. М.Просвещение, 2004 - 384 с. Кузьменко Н.Е., Еремин В.В Начала химии. Учеб. пособие для старшеклассников и поступающих в вузы.. - М.: Дрофа, 2001. - 324 с.

ЕГЭ-2008: Химия: реальные задания: / авт.-сост. Корощенко А.С., Снастина М.Г.- М.: АСТ:Астрель, 2008.-94с. - (Федеральный институт педагогических измерений).

Мультимедиа - поддержка предмета

Виртуальная школа Кирилла и Мефодия. Уроки химии. 10-11 классы. - М.: ООО «Кирилл и Мефодий», 2004

Химия. Мультимедийное учебное пособие нового образца. - М.: ЗАО Просвещение-МЕДИА, 2005. Цифровые образовательные ресурсы